$\mathrm{C} 3-\mathrm{O} 4$	$1.459(3)$	$\mathrm{C} 3 A-\mathrm{O} 4 A$	$1.456(3)$
$\mathrm{C} 3-\mathrm{C} 12$	$1.512(3)$	$\mathrm{C} 3 A-\mathrm{C} 12 A$	$1.517(3)$
$\mathrm{C} 3-\mathrm{C} 18$	$1.520(3)$	$\mathrm{C} 3 A-\mathrm{C} 18 A$	$1.522(3)$
$\mathrm{O} 4-\mathrm{N} 5$	$1.436(2)$	$\mathrm{O} 4 A-\mathrm{N} 5 A$	$1.438(2)$
$\mathrm{N} 5-\mathrm{C} 1-\mathrm{N} 2$	$114.5(2)$	$\mathrm{N} 5 A-\mathrm{C} 1 A-\mathrm{N} 2 A$	$114.6(2)$
$\mathrm{N} 5-\mathrm{C} 1-\mathrm{C} 6$	$121.8(2)$	$\mathrm{N} 5 A-\mathrm{C} 1 A-\mathrm{C} 6 A$	$121.7(2)$
$\mathrm{N} 2-\mathrm{Cl}-\mathrm{C} 6$	$123.7(2)$	$\mathrm{N} 2 A-\mathrm{ClA}-\mathrm{C} 6 A$	$123.7(2)$
$\mathrm{C} 1-\mathrm{N} 2-\mathrm{C} 3$	$107.6(2)$	$\mathrm{C} 1 A-\mathrm{N} 2 A-\mathrm{C} 3 A$	$106.4(2)$
$\mathrm{C} 1-\mathrm{N} 2-\mathrm{H} 2 \mathrm{~N}$	$122.3(19)$	$\mathrm{C} 1 A-\mathrm{N} 2 A-\mathrm{H} 2 \mathrm{~N} A$	$118.2(15)$
$\mathrm{C} 3-\mathrm{N} 2-\mathrm{H} 2 \mathrm{~N}$	$121.3(19)$	$\mathrm{C} 3 A-\mathrm{N} 2 A-\mathrm{H} 2 \mathrm{~N} A$	$117.9(16)$
$\mathrm{O} 4-\mathrm{C} 3-\mathrm{N} 2$	$100.1(2)$	$\mathrm{O} 4 A-\mathrm{C} 3 A-\mathrm{N} 2 A$	$100.4(2)$
$\mathrm{O} 4-\mathrm{C} 3-\mathrm{C} 12$	$107.1(2)$	$\mathrm{O} 4 A-\mathrm{C} 3 A-\mathrm{C} 12 A$	$107.3(2)$
$\mathrm{N} 2-\mathrm{C} 3-\mathrm{C} 12$	$114.5(2)$	$\mathrm{N} 2 A-\mathrm{C} 3 A-\mathrm{C} 12 A$	$113.9(2)$
$\mathrm{O} 4-\mathrm{C} 3-\mathrm{C} 18$	$110.2(2)$	$\mathrm{O} 4 A-\mathrm{C} 3 A-\mathrm{C} 18 A$	$109.6(2)$
$\mathrm{N} 2-\mathrm{C} 3-\mathrm{C} 18$	$112.3(2)$	$\mathrm{N} 2 A-\mathrm{C} 3 A-\mathrm{C} 18 A$	$112.8(2)$
$\mathrm{C} 12-\mathrm{C} 3-\mathrm{C} 18$	$111.9(2)$	$\mathrm{C} 12 A-\mathrm{C} 3 A-\mathrm{C} 18 A$	$112.1(2)$
$\mathrm{N} 5-\mathrm{O} 4-\mathrm{C} 3$	$109.3(2)$	$\mathrm{N} 5 A-\mathrm{O} 4 A-\mathrm{C} 3 A$	$109.1(2)$
$\mathrm{C} 1-\mathrm{N} 5-\mathrm{O} 4$	$105.5(2)$	$\mathrm{C} 1 A-\mathrm{N} 5 A-\mathrm{O} 4 A$	$105.2(2)$
$\mathrm{N} 5-\mathrm{Cl}-\mathrm{C} 6-\mathrm{C} 7$	$-32.2(4)$	$\mathrm{N} 5 A-\mathrm{C} 1 A-\mathrm{C} 6 A-\mathrm{C} 7 A-25.0(4)$	

Table 2. Hydrogen-bonding geometry ($\left(\mathrm{A}^{\circ}{ }^{\circ}\right)$

$\quad D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2-\mathrm{H} 2 \mathrm{~N} \cdots \mathrm{~N} 5^{\mathrm{i}}$	$0.89(3)$	$2.44(3)$	$3.287(3)$	$160(3)$
$\mathrm{N} 2 A-\mathrm{H} 2 \mathrm{~N} A \cdots \mathrm{~N} 5 A^{\text {i1 }}$	$0.92(3)$	$2.45(3)$	$3.303(3)$	$155(2)$

Symmetry codes: (i) $x, 1+y, z$; (ii) $x, y-1, z$.
The asymmetric unit contained two molecules of (III) related approximately by a centre of symmetry and differing in the orientation of the phenyl ring at Cl . However, inspection of the $h k l$ intensities did not allow a transformation to a smaller unit cell. Refined $\mathrm{C}-\mathrm{H}$ distances are in the range 0.92 (3)1.07 (4) \AA.

Data collection: KM4B8 (Gałdecki et al., 1997a). Cell refinement: $K M 4 B 8$. Data reduction: DATAPROC (Gałdecki et al., 1997b). Program(s) used to solve structure: SHELXS86 (Sheldrick, 1990a). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Molecular graphics: SHELXTL/PC (Sheldrick, 1990b). Software used to prepare material for publication: SHELXL93.

This work was supported by a grant from the Polish State Committee for Scientific Research (No. 3TO9A05015). We are grateful to Professor Z. Gałdecki for his kind permission to use the SHELXTL program for creating drafts.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: SK1322). Services for accessing these data are described at the back of the journal.

References

Baruah, A. K., Prajapati, D. \& Sandhu, J. S. (1988). Tetrahedron, 44. 1241-1246.
Cristau, H.-J., Lambert, J.-M. \& Pirat, J.-L. (1998). Synthesis, pp. 1167-1170.
De Micheli, C., Gandolfi, R. \& Grünanger, P. (1974). Tetrahedron, 30, 3765-3773.
Duax, W. L. \& Norton, D. A. (1975). Editors. Atlas of Steroid Structure, Vol. 1, pp. 18-19. New York: Plenum.
Gałdecki, Z., Kowalski, A., Kucharczyk, D. \& Uszyński, I. (1997a). KM4B8. KM-4 Diffractometer Control and Data Collection Program. Kuma Diffraction, Wrocław, Poland.
Gałdecki, Z., Kowalski, A. \& Uszyński, I. (1997b). DATAPROC. Data Processing Program for Kuma Diffraction Diffractometers. Kuma Diffraction, Wrocław, Poland.
Pedireddi, V. R. \& Desiraju, G. R. (1992). J. Chem. Soc. Chem. Commun. pp. 988-990.

Sheldrick, G. M. (1990a). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1990b). SHELXTL/PC User's Manual. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crustal Structures. University of Göttingen, Germany.
Słowikowska, J., Consiglio, G. A., Failla, S.. Finocchiaro, P. \& Lipkowski, J. (1998). J. Mol. Struct. 442, 259-266.

Acta Cryst. (1999). C55, 2158-2160

2-Tosylaminobenzaldehyde \dagger

José Mahía, ${ }^{a}$ Miguel Maestro, ${ }^{a}$ Miguel Vázquez, ${ }^{b}$ Manuel R. Bermejo, ${ }^{b}$ Ana M. González ${ }^{b}$ and Marcelino Maneroo ${ }^{b}$
${ }^{a}$ Servicios Xerais de Apoio á Investigación, Universidade da Coruña, Campus da Zapateira s/n, E-15071 A Coruña, Spain, and ${ }^{\text {b }}$ Departamento de Química Inorgánica, Facultade de Química, Universidade de Santiago de Compostela. Av. das Ciencias s/n, E-15706 Santiago de Compostela (A Coruña), Spain. E-mail: sxaixs@udc.es
(Received 13 Mav. 1999: accepted 9 September 1999)

Abstract

The title molecule, $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{NO}_{3} \mathrm{~S}$, is not planar; the angle between the two aromatic rings is $81.85(6)^{\circ}$. The confornation of the molecule in the solid state is determined by an intramolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond. This interaction modifies the electrophilic character of the C atom in the carboxaldehyde group, rendering it more suitable for a nucleophilic attack.

Comment

The preparation of the title compound, (I), is the first step in the synthesis of dianionic Schiff bases (Bailey et al., 1974; Bailey \& McKenzie, 1980) that could act as polydentate ligands through both N and O atoms.

The crystal structures of the ligands N, N^{\prime}-bis(2-tosylaminobenzylidene)-1,3-diaminopropane (Mahía et al., 1999) and 2-isopropylidene-1-(p-toluenesulfonyl)hydrazide (Ojala et al., 1998), and of the mononuclear

[^0]copper(II) and nickel(II) complexes with bis[4-methylN -(2-pyridin-2-ylethyl)benzenesulfonamide] (Durán et al., 1997), have been described in the literature. Moreover, bis $\left\{N-[(2-\right.$ pyrrolyl $)$ methylidene $]-N^{\prime}$-(tosyl-1,2benzenediaminato) \}zinc(II) (Romero et al., 1997) and bis[2-(p-toluenesulfonylamino) (2^{\prime}-pyridyl) anilinato]cobalt(II) (García-Vázquez et al., 1998), which contain the same p-toluenesulfonylamine group as the title compound, have been previously reported.

The two aromatic rings of the molecule are essentially planar, with mean deviations of $0.005 \AA$ for C2-C7 and $0.003 \AA$ for $\mathrm{C} 8-\mathrm{Cl} 3$. The rings planes form an interplanar angle of $81.85(6)^{\circ}$.

The S1-O1 and S1-O2 distances are similar [1.4316(14) and 1.4236 (14) \AA, respectively] and are consistent with $\mathrm{S}=\mathrm{O}$ double bonding; similarly, the C14-O3 distance of $1.206(3) \AA$ is consistent with $\mathrm{C}=\mathrm{O}$ double bonding. The geometry around C 14 is trigonal planar, as confirmed by the $\mathrm{C} 13-\mathrm{C} 14-\mathrm{O} 3$ bond angle of 126.8 (2) \AA. The C13, C14, H14A and O 3 atoms form a perfect plane that is inclined at an angle of $3.54(6)^{\circ}$ to the ring C8-C13.

The conformation adopted by the title compound in the solid state is conditioned by a strong intramolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ interaction [$\mathrm{H} 1 A \cdots \mathrm{O} 31.97$ (2) Å]. The resulting six-membered ring N1-C8-C13-C14$\mathrm{O} 3 \cdots \mathrm{H} 1 A$ is planar (Fig. 1), with a mean deviation of $0.013 \AA$. This plane forms an angle of $2.68(11)^{\circ}$ with the $\mathrm{C} 8-\mathrm{C} 13$ ring.

Fig. 1. The molecular structure of (I) showing 50% probability displacement ellipsoids. H atoms (except for that involved in the intramolecular hydrogen bond) have been omitted for clarity.

The $\mathrm{C} 8-\mathrm{N} 1-\mathrm{S} 1$ angle $\left[125.03(13)^{\circ}\right.$] is distinctly larger than the expected value for an $s p^{3}$-hybridized N atom. We consider that this intramolecular hydrogen bond confers increased electrophilic character on the C atom of the carboxaldehyde group.

Finally, there are no significant structural changes between this molecule and N, N^{\prime}-bis(2-tosylamino-benzylidene)-1,3-diaminopropane, obtained by reaction of the title compound with 1,3-diaminopropane (Mahía et al., 1999): the angle between the two aromatic rings for the aldehyde increases on condensation from 81.85 (6) to $82.8(1)^{\circ}$; the $\mathrm{C} 8-\mathrm{N} 1-\mathrm{S} 1-\mathrm{C} 5$ torsion angle is similar in both the aldehyde and the Schiff base [59.86(17) and $61.0(2)^{\circ}$, respectively]; and there is no significant increase of the $\mathrm{C} 8-\mathrm{N} 1-\mathrm{S} 1$ angle in the condensed form [125.03(1) to $\left.126.15(14)^{\circ}\right]$.

Experimental

The title compound was prepared by a method similar to that of Chernova et al. (1971), and was crystallized from chloroform solution by slow evaporation at room temperature. Elemental analysis for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{NO}_{3} \mathrm{~S}$ (\%): calculated (found) C 61.1 (61.0), H 4.7 (4.9), N 5.1 (5.1), S 11.6 (11.7). Mass spectrometry $\left(\mathrm{H}^{+}\right)$: calculated (found) 276.3 (276.1, 100\%). ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}, p.p.m.) : $10.7(s, 1 \mathrm{H}), 9.7(s, 1 \mathrm{H}), 7.7-7.0$ $(m, 8 \mathrm{H}), 2.3-2.2(s, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (CDCl_{3}, p.p.m.): 195.54, $144.68,140.28,136.68,136.61,136.27,130.21$ (2C), 127.67 (2C), 123.43, 122.24, 118.07, 21.97. IR spectroscopy (KBr, $\left.\mathrm{cm}^{-1}\right): \nu(\mathrm{N}=\mathrm{H}) 3136(s), \nu(\mathrm{C}=\mathrm{N}) 1671(s), \nu(\mathrm{C}-\mathrm{N}) 1336$ $(s), \nu_{\mathrm{as}}\left(\mathrm{SO}_{2}\right) 1294(s), \nu_{\mathrm{s}}\left(\mathrm{SO}_{2}\right) 1155(s)$.

Crystal data

$\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{NO}_{3} \mathrm{~S}$
$M_{r}=275.31$
Monoclinic
$P 2_{1} / c$
$a=13.8993$ (7) \AA
$b=8.2374$ (4) \AA
$c=12.0633(6) \AA$
$\beta=105.843(1)^{\circ}$
$V=1328.71(11) \AA^{3}$
$Z=4$
$D_{x}=1.376 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Siemens CCD diffractometer

ω scans

Absorption correction:
empirical (SADABS;
Sheldrick, 1996)
$T_{\text {min }}=0.904, T_{\text {max }}=0.952$
7166 measured reflections 3267 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.042$
$w R\left(F^{2}\right)=0.113$
$S=1.015$
3267 reflections
177 parameters

Mo $K \alpha$ radiation
$\lambda=0.71073 \AA$
Cell parameters from 58 reflections
$\theta=3-26^{\circ}$
$\mu=0.246 \mathrm{~mm}^{-1}$
$T=298$ (2) K
Block
$0.40 \times 0.35 \times 0.20 \mathrm{~mm}$
Pale brown

2471 reflections with

$$
\begin{gathered}
I>2 \sigma(I) \\
R_{\text {int }}=0.022 \\
\theta_{\max }=28.27^{\circ} \\
h=-18 \rightarrow 15 \\
k=-10 \rightarrow 10 \\
l=-13 \rightarrow 16
\end{gathered}
$$

$$
\begin{aligned}
& w=1 /[{\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0467 P)^{2}\right.} \\
&+0.4657 P] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.24 \mathrm{e} \AA \AA^{-3} \\
& \Delta \rho_{\min }=-0.40 \mathrm{e}^{-3}
\end{aligned}
$$

H atoms treated by a mixture of independent and constrained refinement

Extinction correction: none Scattering factors from International Tables for Crystallography (Vol. C)

Table 1. Selected geometric parameters ($\AA \mathrm{A}^{\circ}$)

S1-02	1.4236 (14)	$\mathrm{O} 3-\mathrm{Cl} 4$	1.206 (3)
S1-01	1.4316 (14)	N1-C8	1.415 (2)
S1-N1	1.6353 (16)	$\mathrm{Cl} 3-\mathrm{Cl} 4$	1.466 (3)
S1-C5	1.7596 (17)		
$\mathrm{O} 2-\mathrm{S} 1-\mathrm{O} 1$	119.51 (9)	$\mathrm{Ol}-\mathrm{Sl}-\mathrm{C} 5$	108.34 (8)
O2-S1-N1	109.33 (9)	$\mathrm{N} 1-\mathrm{Sl}-\mathrm{C} 5$	106.64 (8)
$\mathrm{O} 1-\mathrm{Sl}-\mathrm{N} 1$	104.13 (9)	C8-N1-S1	125.03 (13)
$\mathrm{O} 2-\mathrm{S} 1-\mathrm{C} 5$	108.18 (9)	$\mathrm{O} 3-\mathrm{C} 14-\mathrm{C} 13$	126.8 (2)
C5-S1-N1-C8	59.9 (2)		

Table 2. Hydrogen-bonding geometry $\left(\AA^{\circ},^{\circ}\right)$

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathbf{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 A \cdots \mathrm{O} \cdots$	$0.88(2)$	$1.97(2)$	$2.708(2)$	$141(2)$

The positions of all H atoms were calculated geometrically and a riding model was used in their refinement, except for H1A which was involved in the intramolecular hydrogen bond and was found in a residual electronic density map and refined freely.

Data collection: SMART (Siemens, 1995). Cell refinement: SMART. Data reduction: SAINT (Siemens, 1995). Program(s) used to solve structure: SHELXS97 (Sheldrick, 1990). Program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a). Molecular graphics: SHELXTL (Sheldrick, 1997b). Software used to prepare material for publication: SHELXTL.

We thank Xunta de Galicia (XUGA 20901B97) for their financial support. Universidade da Coruña also thanks Xunta de Galicia (XUGA INFRA-97) for supporting acquisition of the CDD diffractometer.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: JZ1360). Services for accessing these data are described at the back of the journal.

References

Bailey, N. A. \& McKenzie, E. D. (1980). Inorg. Chim. Acta, 43, 205-210.
Bailey, N. A., McKenzie, E. D. \& Worthington, J. M. (1974). J. Chem. Soc. Dalton Trans. pp. 763-767.
Chernova, N. I., Ryabokobylko, Y. S., Brudz, V. G. \& Bolotin, B. M. (1971). Zh. Neorg. Khim. p. 1680.

Durán, M. L., García-Vázquez, J. A., Romero, J., Castiñeiras, A., Sousa, A., Garnovskii, A. D. \& Garnovskii, D. A. (1997). Polyhedron, 16, 1707-1711.
García-Vázquez, J. A., Romero, J., Durán, M. L., Sousa, A., Garnovskii, A. D., Burlov, A. S. \& Garnovskii, D. A. (1998). Polyhedron, 17, 1547-1552.
Mahía, J., Maestro, M., Vázquez, M., Bermejo, M. R., Maneiro, M. \& Sanmartín, J. (1999). Acta Cryst. C55, 1545-1547.
Ojala, C. R., Ojala, W. H., Pennamon, S. Y. \& Gleason, W. B. (1998). Acta Cryst. C54, 57-60.
Romero, J., García-Vázquez, J. A., Durán, M. L., Castin̄eiras, A., Sousa, A., Garnovskii, A. D. \& Garnovskii, D. A. (1997). Acta Chem. Scand. 51, 672-675.
Sheldrick, G. M. (1990). SHELXS97. Program for the Solution of Crystal Structures. University of Göttingen, Germany.

Sheldrick, G. M. (1996). SADABS. Program for Empirical Absorption Correction of Area Detector Data. University of Göttingen, Germany.
Sheldrick, G. M. (1997a). SHELXL97. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Sheldrick, G. M. (1997b). SHELXTL. An Integrated System for Solving and Refining Crystal Structures. University of Göttingen. Germany.
Siemens (1995). SMART and SAINT. Area-Detector Control and Integration Software. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Acta Cryst. (1999). C55, 2160-2163

ent-Isocopal-12-ene-15,16-dialdehyde from Spongia officinalis

Raffaella Pulitia and Carlo Andrea Mattia ${ }^{b}$
${ }^{a}$ Istituto per la Chimica di Molecole di Interesse Biologico CNR, \dagger Via Toiano 6, 80072 Arco-Felice (Napoli), Italy, and ${ }^{b}$ Dipartimento di Chimica dell' Università 'Federico II' and, Centro di Studio di Biocristallografia CNR, Via Mezzocannone 4, 80134 Napoli, Italy. E-mail: puliti@chemna.dichi. unina.it

(Received 11 May 1999; accepted 31 August 1999)

Abstract

The X-ray analysis of the natural product ent-isocopal-12-ene-15,16-dialdehyde, 1,4,4a,4b,5,6,7,8,8a,9,10,10a-dodecahydro-4b,8,8,10a-tetramethyl-1,2-phenanthrenedicarboxaldehyde, $\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{O}_{2}$, is reported. The compound was isolated, together with other diterpenes of the spongian type, from the diethyl ether soluble fraction of Spongia officinalis [Cimino, Morrone \& Sodano (1982). Tetrahedron Lett. 23, 4139-4142] and characterized. In the asymmetric unit, there are two molecules showing high geometrical and conformational similarity. The C-20 diterpenoid presents a trans-fused tricyclic system with a 1,4-dialdehyde function, adjacent to the double bond of the cyclohexene ring. Short intramolecular contacts, especially between the axial and isooriented methyl groups, cause significant distortions in the ring skeleton similar to that observed in other correlated structures. The profile of the molecule is rather bent (radius of curvature about $13 \AA$) in the direction perpendicular to the averaged molecular plane. Similar bending has been observed in the correlated scalaradial and 12-deacetoxyscalaradial structures and helps to improve the intramolecular interactions.

^[\dagger Associated to the National Institute for the Chemistry of Biological Systems (CNR).]

[^0]: \dagger Alternative name: N-(o-formylphenyl)-4-toluenesulfonamide.

